Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods
نویسندگان
چکیده
منابع مشابه
Parallel Iterative Discontinuous Galerkin Finite-element Methods
We compare an iterative asynchronous parallel algorithm for the solution of partial diierential equations, with a synchronous algorithm , in terms of termination detection schemes and performance. Both algorithms are based on discontinuous Galerkin nite-element methods, in which the local elements provide a natural decomposition of the problem into computationally-independent sets. We demonstra...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملDiscontinuous Galerkin Finite Element Method for the Wave Equation
The symmetric interior penalty discontinuous Galerkin finite element method is presented for the numerical discretization of the second-order wave equation. The resulting stiffness matrix is symmetric positive definite and the mass matrix is essentially diagonal; hence, the method is inherently parallel and leads to fully explicit time integration when coupled with an explicit timestepping sche...
متن کاملStabilization Mechanisms in Discontinuous Galerkin Finite Element Methods
In this paper we propose a new general framework for the construction and the analysis of Discontinuous Galerkin (DG) methods which reveals a basic mechanism, responsible for certain distinctive stability properties of DG methods. We show that this mechanism is common to apparently unrelated stabilizations, including jump penalty, upwinding, and Hughes–Franca type residual-based stabilizations.
متن کاملImplementation of the Continuous-Discontinuous Galerkin Finite Element Method
For the stationary advection-diffusion problem the standard continuous Galerkin method is unstable without some additional control on the mesh or method. The interior penalty discontinuous Galerkin method is stable but at the expense of an increased number of degrees of freedom. The hybrid method proposed in [5] combines the computational complexity of the continuous method with the stability o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Numerical Methods in Engineering
سال: 2008
ISSN: 0029-5981,1097-0207
DOI: 10.1002/nme.2217